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Abstract. Discriminating between secreted and membrane proteins is
a challenging task. A recent and important discovery to understand the
machinery responsible of the insertion of membrane proteins was the re-
sults of Hessa experiments [9]. The authors developed a model system
for measuring the ability of insertion of engineered hydrophobic amino
acid segments in the membrane. The main results of these experiments
are summarized in a new ”biological hydrophobicity scale”. In this scale,
each amino acid is represented by a curve that indicates its contribu-
tion to the process of protein insertion according to its position inside
the membrane. We follow the same hypothesis as Hessa but we propose
to determine “in silico” the hydrophobicity scale. This goal is formal-
ized as an optimization problem, where we try to define a set of curves
that gives the best discrimination between signal peptide and protein
segments which cross the membrane. This paper describes the genetic
algorithm that we developed to solve this problem and the experiments
that we conducted to assess its performance.

Keywords: Membrane Proteins, Classification, Optimization, Genetic
Algorithm.

1 Introduction

Membrane proteins play an important role in many processes in living cells,
and they are the targets of many pharmaceutical developments. In fact, 50% of
these proteins are used in human and veterinarian medicine [4]. Despite their
number and their importance, membrane proteins with known three-dimensional
structures represent only 2% of the protein data bank (PDB) [2]. It is difficult to
determine their structure because they are difficult to express and crystallize [13].
The great importance of these proteins promoted their study and particularly
the search of the machinery responsible of addressing these proteins towards the
membrane [23].

The proteins transported across the endoplasmic reticulum (ER) membrane
include soluble proteins and membrane proteins. Soluble proteins completely
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cross the membrane and usually include a short N-terminal segment3, called
Signal Peptide (SP), that will be cleaved after transport. Membrane proteins
have one or several segments that get inserted into the membrane, called trans-
membrane (TM) segments. Both types of proteins use the same machinery for
transport across the ER membrane, a protein complex located in the ER mem-
brane called the translocon. The translocon channel allows the soluble proteins
to cross the membrane and permits the hydrophobic TM segment of membrane
proteins to fit in the membrane. SP and TM segments have very close bio-
chemical properties, and particularly they both contain a hydrophobic region.
Nevertheless, a TM segment possess the ”key” to open sideways the translocon,
which permits the insertion of the protein in the membrane.

Bioinformatics methods suggest some solutions to deal with the recognition
of membrane proteins. One of the first prediction method was proposed by Kyte
and Doolittle [16]. This method was based on an experimentally determined
hydrophobicity index where each amino acid was given a score based on its
preference to water or lipid. A hydrophobicity plot was performed by summing
the hydrophobicity index over a window of a fixed length and values superior
to a cutoff threshold indicates possible TM segments. However, this method
performed poorly and is outperformed by machine learning algorithms. More
recent works propose methods based on hidden Markov models such as TMHMM
[15] and HMMTOP [21], on artificial neural networks such as PHDhtm [20] and
Memsat [10]. Other methods combine the prediction of TM segments and SP
such as Phobius [14], Philius [19], and SPOCTOPUS [22]. These methods give
good discrimination performances, but it is difficult to link their results to a
biological interpretation of the translocon machinery. Furthermore, they still
sometimes confuse a SP and a TM segment. This is particulary true for the first
TM segment of a membrane protein, that is located in the N-terminal region.

In 2005, Hessa et al. carried out a series of in vitro experiments with the
aim to compute the energy required for the insertion of a designed TM segment
in the membrane [8]. Unlike Kyte and Doolittle which attribute to each amino
acid a single hydrophobicity index, Hessa et al. determine for each amino acid a
contribution profile - the potential of insertion - according to its position in the
segment. As a result, Hessa et al. suggested a ’biological hydrophobicity scale’
[9] where each amino acid is represented by a curve. The experiments leading to
these curves are very complex to realize, and the predictive system issued from
this work such as SCAMPI [3] was only designed to predict TM segments. In
fact, SCAMPI does not offer a good distinction between SP and TM segments.

In our work, we follow the same hypothesis as Hessa et al. and we assume
that we can elaborate ”in silico” a new scale for the amino acids, by studying two
sets of protein segments which cross the translocon and share the same chemical
hydrophobic profile: SP and TM segments. This scale could benefit from a large
quantity of data stored in the protein databases and consequently could be more

3 This paper only considers the primary structure of a protein, represented by a se-
quence of amino acids. One extremity of this sequence (the first synthesized by the
ribosome) is called N-terminal.
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precise than the scales derived by in vitro experiments. This paper introduces a
genetic algorithm to optimize this scale. As suggested by Hessa et al., an amino
acid may have different hydrophobic indexes according to its position inside the
translocon channel, and consequently we represent its hydrophobic profile by a
symmetric curve. However, we shall see that for some amino acids the profile
can be represented by a straight line.

The remainder of this paper is organized as follows. In section 2, we describe
our formalization of this problem and the genetic algorithm designed to opti-
mize the curves. Section 3 presents the learning dataset that we have built, and
the validation protocol while Section 4 reports the experimental results. Finally
conclusions are provided in section 5.

2 Optimization of a hydrophobicity scale

2.1 Overview of our approach

Figure 1 summarizes the approach that we propose to determine the amino acid
insertion profiles (curves of amino acids). Our study relies on a learning dataset
composed of two types of sequences: SP (class SP) and TM segments (class TM).
We define a simple classifier inspired from the work of Kyte and Doolittle. This
classifier slides a window to compute an insertion score for each sequence in order
to correctly recognize the SP and the TM segments of the learning dataset. The
classifier is determined by 20 curves that represent the insertion profiles of the
20 amino acids. To obtain the best discrimination between SP and TM, a genetic
algorithm is executed in order to optimize the set of 20 curves. In the following
of this section, we describe more precisely each component of this approach.

Fig. 1. In silico determination of a hydrophobicity scale.
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2.2 Discrimination function: a sliding window classifier

If a denotes one of the 20 amino acids, we note C[a] the curve associated to a

in the scale. The curve C[a] gives the value of the hydrophobicity index of the
amino acid a depending on its position during the process of protein insertion in
the membrane. As the membrane thickness is about 20 amino acids, the curves
are defined on a window of length l with l ≃ 20. An appropriate window length
l will be determined experimentally as explained in section 3.3.

For j ∈ [1, l], C[a, j] = C[a](j) denotes the index of the amino acid a when
it is in position j in the window. For a sequence Seq of amino acids of length l,
we use the notation Seq = < a1a2 . . . al > and we define the insertion average
of this sequence as the average of its indexes :

E(Seq) =

∑l

j=1
C[aj , j]

l
(1)

In the case of a longer sequence Seq = < a1a2 . . . an > of length n > l,
a sliding window of fixed length l is scanned on the sequence and we define
the insertion index of this sequence as the maximum average calculated on a
sub-sequence of length l:

Emax(Seq) = max
1≤k≤n−l+1

{E(Seqk)} (2)

where Seqk = < akak+1 . . . ak+l−1 >.

Classifier SP/TM: The distinction between the class SP and the class
TM is given by the insertion index Emax(Seq) and a threshold τ . Emax(Seq)
corresponds to the maximum value of hydrophobicity of the sequence, whereas
the threshold τ represents a value separating the two classes SP and TM.

A segment TM is generally hydrophobic [16] and therefore our classification
rule is:

{

Seq ∈ class SP if Emax(Seq) < τ

Seq ∈ class TM otherwise

The set of curves and the threshold τ determine our classifier. Its quality
is evaluated by the accuracy and the area under the ROC curve (AUC), which
measure the ability of the curves to discriminate between SP sequences and TM
sequences.

2.3 Curves encoding

According to the results of [9] that suggest symmetric insertion profiles, we
represent each curve by a parabola defined by an equation H = α(x−X0)

2 + β,
and we determine a curve by the pair of parameters (Hextremity , Hmiddle) (figure
2 (A)). Hextremity is the value of the curve at the extremities of the window of
length l (Xmin = 1 and Xmax = l), whereas Hmiddle is the value of the curve at
the middle of the window.
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Fig. 2. Representation of an insertion curve.

To modify the curve we change (Hextremity , Hmiddle). The modification of
Hextremity means that we can act on the behavior of the amino acid at the inter-
faces of the membrane, while changing Hmiddle allows us to act on the behavior
of the amino acid in the middle of the membrane. Note that the manipulated
curves can be straight lines (figure 2 (B)) defined byHextremity = Hmiddle (α = 0
for the equation of the parabola).

2.4 A genetic algorithm for optimizing the curves

To optimize the amino acid curves, we use a genetic algorithm (GA). Our algo-
rithm follows the classic schema of a genetic algorithm by evolving a population
of individuals. Each individual in our population is a set of 20 curves and each
curve is coded by a couple (Hextremity , Hmiddle). The algorithm begins with an
initial population generated by random modifications on a known hydrophobic-
ity scale. The population evolves through the generations by the application of
crossover and mutation operators that act directly on the curves of the individ-
uals. An elitism mechanism is used to keep the best individuals of a population.
This process is repeated until a predefined number of generations is reached.

Initial population: The litterature proposes several hydrophobicity scales
where each amino acid is assigned a constant index. In our GA algorithm, we de-
cide to generate an initial population by modifications applied on the Eisenberg
hydrophobicity scale [5].

Each individual in our initial population is a set of 20 straight lines. To build
such an individual, we first initiate a random number k between 1 and 20, which
represents the number of amino acid indexes that will be modified. We randomly
choose these k amino acids, and we change the value Hmiddle of these k amino
acids by the addition of a real value ∆mid randomly selected between [−3, 3]
(interval determined experimentally). This process is repeated to generate the
required number n of individuals in the initial population. The population size
is fixed at n = 100 in this work.
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Fitness function: The purpose of the GA algorithm is to optimize a set of
20 curves, in order to correctly discriminate SP sequences from TM sequences.
Therefore, the fitness function is given by the classification accuracy measured
on the learning dataset.

Evolution: The individuals of the current population P are sorted accord-
ing to the fitness function. The 10% best individuals of P are directly copied to
the next population P ′ and removed from P . The remaining 90% individuals are
then generated by using crossover between two parents selected from the current
population by following the principle of wheel selection [7].

Crossover operator: Our crossover operator considers two parents and
generates two children, by exchanging a certain number of curves between two
parents (figure 3 (A)).

Fig. 3. Figure A shows the crossover operator between two parents where the curves
of the amino acids aspartic (D), histidine (H), méthionine (M), proline (P), tyrosine
(Y) are exchanged. Figure B shows the mutation operator modifying the curve of the
amino acid leucine (L).

To generate the new individuals, we perform the following steps :

1. Randomly select in [1,15] (interval determined experimentally) the number
M of amino acids that will be modified between the two parents.

2. Randomly choose the M amino acids which are going to be exchanged.
3. Exchange the curves of the amino acids of the the first parent with the curves

of the same amino acids of the second parent.

Mutation operator: The mutation operator is designed to enrich the di-
versity of the population by manipulating the structure of individual. In our
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mutation operator we apply a local modification (figure 3 (B)) to a given indi-
vidual by performing the following steps:

1. Randomly select in [1,12] (interval determined experimentally) the number
N of amino acids that will be modified.

2. Randomly choose the N amino acids which are going to be modified.
3. Modify the parameters (Hextremity , Hmiddle) of the curve by adding a cou-

ple (∆Hext, ∆Hmid) of real values randomly selected between [−2, 2]. For a
straight line, we modify only the parameter Hmiddle by adding a ∆Hmid.

The mutation operator is applied every 10 generations on 90% of the popu-
lation.

Strategies of optimization of the curves: In a previous work [17], we pre-
sented statistics of the amino acid frequencies in our datasets. We have observed
that the amino acids Alanine (A), Phenylalanine (F), Isoleucine (I), Leucine
(L), Glycine (G), Serine (S) and Valine (V) are the most frequent ones. For the
other amino acids, the learning dataset provides few information and therefore
the precise definition of their hydrophobicity curves relies on insufficient sup-
port. So, we propose to represent the insertion index of these amino acids by
a straight line, for which the algorithm has to determine only one parameter.
Conversely, for the 7 frequent amino acids, the algorithm has to determine a
symmetric curve.

To explore the search space, our GA algorithm operates in two stages. In
the first stage, the hydrophobicity indexes are represented by straight lines for
all the amino acids, even the frequent ones and the algorithm has to determine
the optimal values in this search space. The purpose is to position the sliding
window and at the same time to determine the best individual (solution S1) to
discriminate between SP and TM segment. In the second stage, the algorithm
fixes the values of the amino acids which are not frequent to the values of the
solution S1 and optimizes symmetric curves for the frequent amino acids by ap-
plying specific operators.

Specific operators: The specific operators are very similar to the precedent
operators but they only modify the curves of the frequent amino acids. Thus,
the specific crossover operator exchanges the curves of the frequent amino acids
between two parents. It chooses randomly M amino acids (M ≤ 7) among the
frequent amino acids and exchanges their curves. As well, the specific mutation
modifies the curves of the frequent amino acids. It chooses randomly N amino
acids (N ≤ 7) among the frequent amino acids and modifies their curves by
adding a real value ∆mid .

These specific operators allow us to limit the search space by limiting the
number of parameters that must be optimized, only the curves of seven amino
acids are optimized. The learning dataset provides more information for these
amino acids and for this reason, it seems natural to concentrate our search on
the frequent amino acids. The more information we have about the amino acids,
the more accurately the algorithm can optimize their curves.
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3 Experiments and results

3.1 Learning dataset: SWP

Our approach requires a dataset containing SP and first TM segments. So, we
built a data set, called ”SWP” by extracting from the UniprotKB/Swiss-Prot
database [12] 684 proteins with TM segments and the same number of proteins
with SP. In the case of a soluble protein, the sequence stored in SWP corresponds
to the signal peptide (SP). We represent it by the first 35 amino acids of the
protein because the length of SP for eucaryotic proteins ranges from 22 to 32
amino acids [1]. In the case of a membrane protein, the sequence stored in SWP
corresponds to the first transmembrane segment as annotated in the database.
As the annotation of the proteins in SwissProt is the result of TM prediction
programs such as TMHMM [15] and MEMSAT [11], we consider that the TM
segments in SwissProt are not precisely located on the sequence. So, we add to
the TM segment representation the 10 adjacent amino acids before and after
the annotated position. To summarize, in our dataset SWP, asecreted protein
is represented by a SP which corresponds to the first 35 amino acids, while a
membrane protein is represented by its first TM segment with the 10 adjacent
amino acids before and after the annotated position.

Note that the constructed dataset relies on the lastest version of the Uniprot-
KB/Swiss-Prot database and overlaps the datasets used by other methods. It
seems unfair to learn on our dataset and test on other sets of proteins. So, we test
all the methods on our dataset using the validation protocol described below.

3.2 Validation protocol

To assess the performance of our method, we perform a 10-fold cross-validation
on the dataset SWP. The initial dataset SWP is split into K = 10 subsets of the
same size. The method builds a classifier with (K−1) subsets as training set and
estimates the error on the remaining subset (test set). We repeat K times the
same process by varying the subset that plays the role of test set. The accuracy
estimated by K-fold cross-validation is then the average of the accuracies of
these K experiments.

3.3 Experimental results

The purpose of this experiment is 1) to evaluate the influence of the length of
the sliding window of the classifier and 2) to optimize the values of the curves for
each amino acid. As explained before, the membrane length is about 20 amino
acid positions. Hessa et al. optimize a profile contribution for each amino acid
on a window of 19 amino acids which means that the length of the curves is 19
amino acids. However, the statistical distribution of TM segments in proteins
with known 3D structure shows that most TM segments have a length ranging
between 21 and 30 amino acids [18]. So, in this experiment we assess a window
with 19, 21, and 23 amino acids.
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Fig. 4. Performance comparison with different window lengths. The figure shows the
average accuracy and average AUC of the best individual of the population.

We run our GA according to the protocol described in section 2.4. In figure
4, the X axis represents the number of generations, while Y axis represents the
average accuracy (left figure) and the AUC (right figure) of the best individual of
a population. The best results of the accuracy and the AUC are obtained when
we use a window with 23 amino acids (green line). This means that the curves
with 23 amino acids are better suited to discriminate between signal peptides
and TM segments. The figure also displays the performance evolution through
the generations. From the generation 1 to the generation 80, our algorithm is in
its first stage and it optimizes a straight line for each amino acid. The second
stage starts from the optimum solution obtained in the first step to optimize the
curves of the frequent amino acids. We observe that this second stage, which only
modifies the curves of 7 frequent amino acids, still improves the performance.
We can also notice that several runs of our GA give similar results.

This evolution process ends when a predefined number of generations is
reached. We do not use any system to avoid overfitting in the training phase.

Table 1 summarizes a comparison with other algorithms. We compare our
algorithm with Kyte & Doolittle (KD), Eisenberg (EIS), Engelman (GES) [6]
scales and two of the best methods for the discrimination between signal peptides
and TM segments: Phobius and Philius. The first method, Phobius, is based on
Hidden Markov model and the second method, Philius uses Dynamic Bayesian
Networks for its prediction. We also compare the GA algorithm with a method
that we developed previously, MN-LS [17] which uses a local search approach for
determining the curves of the amino acids. Each prediction method is applied
on each fold and then we calculate the average accuracy evaluated according
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to the same process of 10-fold cross-validation, and table 1 reports the average
accuracy with the standard deviation.

Method KD EIS GES Phobius Philius MN-LS GA algorithm

average accuracy 0.765 0.755 0.768 0.855 0.842 0.853 0.867

Standard deviation 0.031 0.029 0.0035 0.035 0.032 0.022 0.031
Table 1. Comparison of our GA and other methods. The table gives the average
accuracy and the standard deviation obtained on SWP dataset.

The prediction methods based on the hydrophobicity scales slide a fixed
length window along the sequence and use a cutoff value to decide if the se-
quence is a possible TM segment or SP. These methods, as well as MN-LS and
GA method, only require as inputs SP and TM segments. For Phobius and
Philius, both methods only accept the complete sequence in their web server.
These methods are trained to predict SP sequences and TM segments using
the complete protein sequence which allow them to take into account additional
information like the different composition between cytoplasmic or reticulum ex-
posed loops. MN-LS and GA are developed to optimize curves representing the
potential contribution of each amino acid during the insertion of segments in the
membrane and use only the SP or the TM segment.

A performance evaluation is presented table 1. We can observe that the
hydrophobicity scales perform poorly on SWP dataset, while GA gives the best
result. Our GA improved the values of the Eisenberg scale which we used to
generate the initial population. However, Phobius and Philius obtain also good
predictive performances, but it is easier to drive intuitively-simple reason related
to the translocon mechanism for each prediction produced by MN-LS or GA.

Our previous MN-LS method uses a local search approach to determine the
curves. As a result, the curves depend on the values of the initial solution, while
the GA algorithm optimizes the curves by exploring a large search space in a
diversified way and with a good discrimination. The standard deviation shows
that the performances of the method are stable on the different runs of the
10-fold cross-validation.

4 Conclusion

In this work, we have presented a genetic algorithm to optimize the curves that
represent the contribution of the 20 amino acids to the mechanism of insertion
into the membrane. By using a simple sliding window classifier which computes
an insertion score of sequences, we demonstrated that the GA algorithm is able to
optimize a set of curves that discriminate between two classes of close sequences:
signal peptides and TM segments. Despite the simplicity of the classifier, our
approach provides classification performances that are equal to two of the best
methods of the domain. Furthermore, our approach provides a clear biological
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interpretation of the insertion phenomenon, which is not the case of sophisticated
machine learning methods. Indeed, the curves which we optimize provide an
explanation of the contribution of the amino acids during the insertion of the
proteins in the membrane.

For future work, we want to introduce more knowledge about the phenomena
of membrane proteins insertion to provide more effective guidance of the genetic
algorithm.
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